Higher temperature variability increases the impact of Batrachochytrium dendrobatidis and shifts interspecific interactions in tadpole mesocosms
نویسندگان
چکیده
The emergence of amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd) has led to the decline and extinction of numerous amphibian species. Multiple studies have observed links between climatic factors and amphibian declines apparently caused by Bd. Using outdoor experimental mesocosms, we tested the response of red-legged frog (Rana aurora) tadpoles to increased variation in temperature, a component of climate linked to amphibian declines, and Bd exposure. We included tadpoles of a sympatric competitor species, Pacific chorus frog (Pseudacris regilla), in a fully factorial design to test the effects of Bd and temperature on interspecific interactions. We found that higher variation in temperature had numerous effects in mesocosms, including interacting with Bd presence to decrease the condition of R. aurora, shifting the relative performance of competing P. regilla and R. aurora, and accelerating the development of P. regilla relative to R. aurora. Our results demonstrate that increased variation in temperature can affect amphibians in multiple ways that will be contingent on ecological context, including the presence of Bd and competing species.
منابع مشابه
Can Differences in Host Behavior Drive Patterns of Disease Prevalence in Tadpoles?
Differences in host behavior and resistance to disease can influence the outcome of host-pathogen interactions. We capitalized on the variation in aggregation behavior of Fowler's toads (Anaxyrus [ = Bufo] fowleri) and grey treefrogs (Hyla versicolor) tadpoles and tested for differences in transmission of Batrachochytrium dendrobatidis (Bd) and host-specific fitness consequences (i.e., life his...
متن کاملTemperature variability and moisture synergistically interact to exacerbate an epizootic disease.
Climate change is altering global patterns of precipitation and temperature variability, with implications for parasitic diseases of humans and wildlife. A recent study confirmed predictions that increased temperature variability could exacerbate disease, because of lags in host acclimation following temperature shifts. However, the generality of these host acclimation effects and the potential...
متن کاملElevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is sensitive to high temperature. Hence, exposing amphibians to high temperature may be a method to clear Bd infection. However, the effect of exposure to elevated temperature has never been tested in larval stages or temperate species.We experimentally exposed tadpoles of the toad Alytes obstetricans to low, medium and high tempe...
متن کاملA Non-Invasive Stress Assay Shows That Tadpole Populations Infected with Batrachochytrium dendrobatidis Have Elevated Corticosterone Levels
Batrachochytrium dendrobatidis (Bd) is a fungus that causes the disease chytridiomycosis and is associated with widespread amphibian declines. Populations vary in their susceptibility to Bd infections, and the virulence of the infecting lineage can also vary. Both of these factors may manifest as a differential physiological stress response. In addition, variation in disease susceptibility acro...
متن کاملInterspecific Variation in Susceptibility of Frog Tadpoles to the Pathogenic Fungus Batrachochytrium dendrobatidis
As part of an overall biodiversity crisis many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, and the introduction of non-native species and diseases. Several types of pathogens have been implicated i...
متن کامل